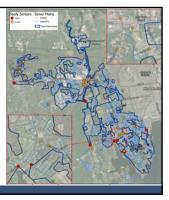


NJWEA 2024 Fall Technology Transfer Seminar Locating and Quantifying I/I Economically and Rapidly Using Flow and Level Sensors

Town of Dartmouth, MA Jessamyn Ingram, Assistant Engineer, Hazen & Sawyer

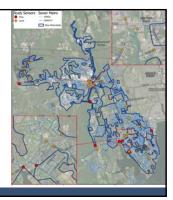
1



- Town of Dartmouth, Massachusetts
 Population: 33,000
- Collection system built in the 1990s
- DPW observed signs of potential inflow and infiltration (I/I)
- Increased sewer pump station runtimes after wet weather
 Elevated flow at the wastewater treatment plant after wet weather

Approach

- To achieve cost-effective broad geographic coverage, Hazen developed a monitoring program that utilized both flow meters and level sensors
- One rain gauge was deployed at the town wastewater treatment plant
- Wastewater treatment plant
 Flow meters measured the volume of I&I occurring within a region of the system
- Flow metersheds were subdivided by level sensors
- Level sensors determine the probability of I/I sources existing in an area
- Flow meters and level sensors were deployed in two phases



Hazen

Monitoring Program: Phase 1 Configuration

- 9 flow meters
- 20 level sensors
- Deployed for 2.5 months (Feb April 2024)
 10 rain events occurred

2

• 1 flow meter

7

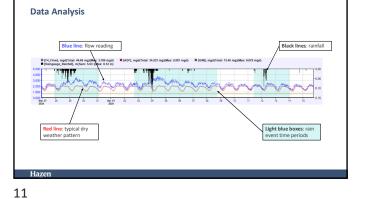
- 5 level sensors
- Deployed for 1 month (May 2024)
- 6 rain events occurred

- Methodology
- Rainfall Derived Inflow and Infiltration (RDII) "R-value" or "Capture
- Coefficient" Quantity of rainwater that

 - enters the sewer system during rainfall R > 5% indicates excessive

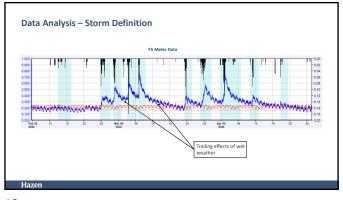
Peak Wet Weather Flow Ratio Highest flow during wet weather divided by the average

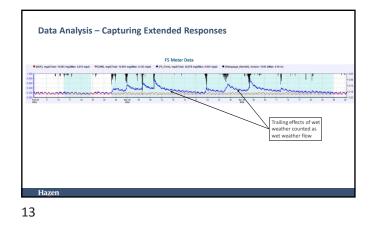
- dry weather daily flow Higher numbers indicate more I/I response, but not
- normalized based on size
- RDII, R > 3% indicates medium response

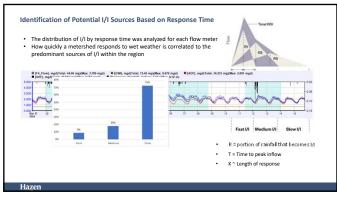

Ground Water Infiltration (GWI) Infiltration that occurs during .

drv weather > 4,000 GPD/IDM indicates excessive groundwater infiltration, >2,000 GPD/IDM indicates medium infiltration

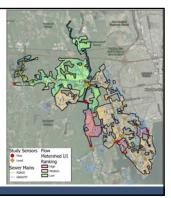
10


Hazen

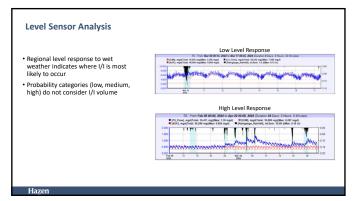

Rainfall – Phase 1 Event No. Start Date uration (hours) Total Depth (inches) Hourly Peak Intensity (in/hr) Rain Event Definition: 2/15/2024 50.75 0.59 0.12 Min 0.25in / 24 hr
 48 hr dry period between events 2/27/2024 27.25 1.7 0.36 1.45 3/2/2024 18.25 0.32 3 All events less than 1-yr return period 3/6/2024 28.25 1.43 0.72 1.45 0.52 5 3/9/2024 8.75 3/23/2024 14.5 1.55 0.52 3/27/2024 37.5 1.94 0.28 7 4/2/2024 125 2.45 0.48 0.59 0.36 9 4/11/2024 22.25 10 4/20/2024 31.5 0.32 0.24 Hazen

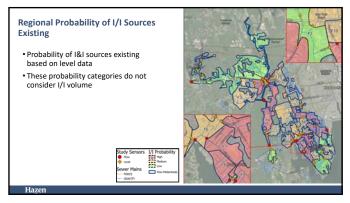

Storm on May 15th	Event No.	Start Date	Duration (hour)	Total Depth (inches)	Hourly Peak Intensity (in/hr)
was of high intensity	1	5/5/2024	12.25	0.48	0.16
	2	5/8/2024	46.5	1.11	0.96
	3	5/15/2024	73.25	5.26	0.96
	4	5/23/2024	3	0.60	0.76
	5	5/27/2024	4.25	1.24	1.24
	6	5/30/2024	9.75	0.58	1.6

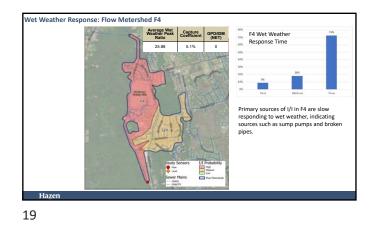
Meter	Capture Coefficient	GPD/IDM	Wet Weather Peak Ratio	I/I Intensity Categor
F1	0.6%	1481	4.66	Low
F2	1.4%	1469	2.01	Low
F3	2.8%	2324	2.45	Medium
F4	5.1%	0	25.88	High
F5	14.2%	4947	3.60	High
F6	3.8%	1015	4.73	Medium
F7	6.5%	5133	13.77	High
F8	6.3%	1918	3.24	High
F9	3.8%	2266	2.53	Medium
F10	0.88%	2609	1.80	Medium

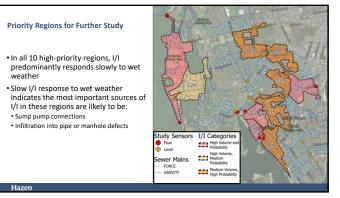

16

I/I Ranking by Flow

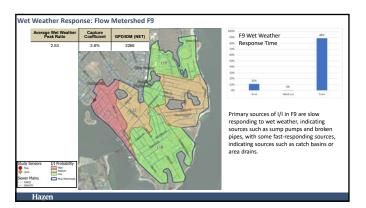

- I/I volume categories determined as shown on the previous slide
- Southern regions of the town generally have more wet weather response

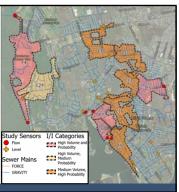



٦


17

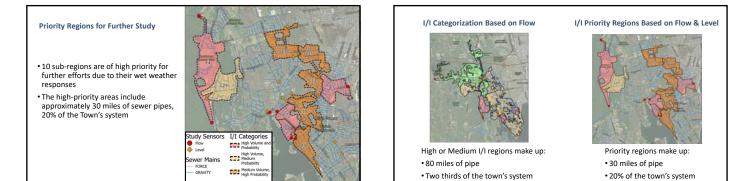
Hazen




22

20

- Building inspections to locate illicit drain connections (including sump pumps).
- CCTV inspection of sewers to locate and quantify defects.
- Sewer smoke testing to locate improper connections from roof drains, catch basins, etc.
- Dye testing of roof drains, catch basins, etc. to locate improper connections.



Hazen

Hazen

24

Takeaways

- Determining meter locations is critical to project success
 Collaborating with the asset owner is very helpful to learn about areas of interest
 Operators usually have regional insights about signs of I/I (pump station runtimes,
 nuisance flooding reports, etc)
- Combining level and flow data allows us to cover a wide area geographically with level sensors but have I/I metrics and flow volumes that can only be reliably calculated with flow meters

• Having town-wide data from a single study gives a complete picture, as compared to several smaller investigations over multiple years

25

Hazen

Questions

Contact:

Jessamyn Ingram, EIT Jingram@HazenandSawyer.com

Benjamin Agrawal, PE <u>Bagrawal@HazenandSawyer.com</u>

Acknowledgments:

Tim Barber, DPW Director, Town of Dartmouth Sandie Waterman, DPW Assistant Director, Town of Dartmouth

26